Class AzureOpenAiStreamingChatModel
- All Implemented Interfaces:
StreamingChatLanguageModel
,TokenCountEstimator
StreamingResponseHandler
.
Mandatory parameters for initialization are: endpoint and apikey (or an alternate authentication method, see below for more information). Optionally you can set serviceVersion (if not, the latest version is used) and deploymentName (if not, a default name is used). You can also provide your own OpenAIClient instance, if you need more flexibility.
There are 3 authentication methods:
1. Azure OpenAI API Key Authentication: this is the most common method, using an Azure OpenAI API key. You need to provide the OpenAI API Key as a parameter, using the apiKey() method in the Builder, or the apiKey parameter in the constructor: For example, you would use `builder.apiKey("{key}")`.
2. non-Azure OpenAI API Key Authentication: this method allows to use the OpenAI service, instead of Azure OpenAI. You can use the nonAzureApiKey() method in the Builder, which will also automatically set the endpoint to "https://api.openai.com/v1". For example, you would use `builder.nonAzureApiKey("{key}")`. The constructor requires a KeyCredential instance, which can be created using `new AzureKeyCredential("{key}")`, and doesn't set up the endpoint.
3. Azure OpenAI client with Microsoft Entra ID (formerly Azure Active Directory) credentials. - This requires to add the `com.azure:azure-identity` dependency to your project, which is an optional dependency to this library. - You need to provide a TokenCredential instance, using the tokenCredential() method in the Builder, or the tokenCredential parameter in the constructor. As an example, DefaultAzureCredential can be used to authenticate the client: Set the values of the client ID, tenant ID, and client secret of the AAD application as environment variables: AZURE_CLIENT_ID, AZURE_TENANT_ID, AZURE_CLIENT_SECRET. Then, provide the DefaultAzureCredential instance to the builder: `builder.tokenCredential(new DefaultAzureCredentialBuilder().build())`.
-
Nested Class Summary
-
Constructor Summary
ConstructorDescriptionAzureOpenAiStreamingChatModel
(com.azure.ai.openai.OpenAIClient client, com.azure.ai.openai.OpenAIAsyncClient asyncClient, String deploymentName, Tokenizer tokenizer, Integer maxTokens, Double temperature, Double topP, Map<String, Integer> logitBias, String user, List<String> stop, Double presencePenalty, Double frequencyPenalty, List<com.azure.ai.openai.models.AzureChatExtensionConfiguration> dataSources, com.azure.ai.openai.models.AzureChatEnhancementConfiguration enhancements, Long seed, com.azure.ai.openai.models.ChatCompletionsResponseFormat responseFormat, List<ChatModelListener> listeners) AzureOpenAiStreamingChatModel
(String endpoint, String serviceVersion, com.azure.core.credential.KeyCredential keyCredential, String deploymentName, Tokenizer tokenizer, Integer maxTokens, Double temperature, Double topP, Map<String, Integer> logitBias, String user, List<String> stop, Double presencePenalty, Double frequencyPenalty, List<com.azure.ai.openai.models.AzureChatExtensionConfiguration> dataSources, com.azure.ai.openai.models.AzureChatEnhancementConfiguration enhancements, Long seed, com.azure.ai.openai.models.ChatCompletionsResponseFormat responseFormat, Duration timeout, Integer maxRetries, com.azure.core.http.ProxyOptions proxyOptions, boolean logRequestsAndResponses, boolean useAsyncClient, List<ChatModelListener> listeners, String userAgentSuffix, Map<String, String> customHeaders) AzureOpenAiStreamingChatModel
(String endpoint, String serviceVersion, com.azure.core.credential.TokenCredential tokenCredential, String deploymentName, Tokenizer tokenizer, Integer maxTokens, Double temperature, Double topP, Map<String, Integer> logitBias, String user, List<String> stop, Double presencePenalty, Double frequencyPenalty, List<com.azure.ai.openai.models.AzureChatExtensionConfiguration> dataSources, com.azure.ai.openai.models.AzureChatEnhancementConfiguration enhancements, Long seed, com.azure.ai.openai.models.ChatCompletionsResponseFormat responseFormat, Duration timeout, Integer maxRetries, com.azure.core.http.ProxyOptions proxyOptions, boolean logRequestsAndResponses, boolean useAsyncClient, List<ChatModelListener> listeners, String userAgentSuffix, Map<String, String> customHeaders) AzureOpenAiStreamingChatModel
(String endpoint, String serviceVersion, String apiKey, String deploymentName, Tokenizer tokenizer, Integer maxTokens, Double temperature, Double topP, Map<String, Integer> logitBias, String user, List<String> stop, Double presencePenalty, Double frequencyPenalty, List<com.azure.ai.openai.models.AzureChatExtensionConfiguration> dataSources, com.azure.ai.openai.models.AzureChatEnhancementConfiguration enhancements, Long seed, com.azure.ai.openai.models.ChatCompletionsResponseFormat responseFormat, Duration timeout, Integer maxRetries, com.azure.core.http.ProxyOptions proxyOptions, boolean logRequestsAndResponses, boolean useAsyncClient, List<ChatModelListener> listeners, String userAgentSuffix, Map<String, String> customHeaders) -
Method Summary
Modifier and TypeMethodDescriptionbuilder()
int
estimateTokenCount
(List<ChatMessage> messages) Estimates the count of tokens in the specified list of messages.void
generate
(List<ChatMessage> messages, ToolSpecification toolSpecification, StreamingResponseHandler<AiMessage> handler) Generates a response from the model based on a list of messages and a single tool specification.void
generate
(List<ChatMessage> messages, StreamingResponseHandler<AiMessage> handler) Generates a response from the model based on a sequence of messages.void
generate
(List<ChatMessage> messages, List<ToolSpecification> toolSpecifications, StreamingResponseHandler<AiMessage> handler) Generates a response from the model based on a list of messages and a list of tool specifications.Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
Methods inherited from interface dev.langchain4j.model.chat.StreamingChatLanguageModel
chat, defaultRequestParameters, generate, generate, supportedCapabilities
Methods inherited from interface dev.langchain4j.model.chat.TokenCountEstimator
estimateTokenCount, estimateTokenCount, estimateTokenCount, estimateTokenCount
-
Constructor Details
-
AzureOpenAiStreamingChatModel
public AzureOpenAiStreamingChatModel(com.azure.ai.openai.OpenAIClient client, com.azure.ai.openai.OpenAIAsyncClient asyncClient, String deploymentName, Tokenizer tokenizer, Integer maxTokens, Double temperature, Double topP, Map<String, Integer> logitBias, String user, List<String> stop, Double presencePenalty, Double frequencyPenalty, List<com.azure.ai.openai.models.AzureChatExtensionConfiguration> dataSources, com.azure.ai.openai.models.AzureChatEnhancementConfiguration enhancements, Long seed, com.azure.ai.openai.models.ChatCompletionsResponseFormat responseFormat, List<ChatModelListener> listeners) -
AzureOpenAiStreamingChatModel
public AzureOpenAiStreamingChatModel(String endpoint, String serviceVersion, String apiKey, String deploymentName, Tokenizer tokenizer, Integer maxTokens, Double temperature, Double topP, Map<String, Integer> logitBias, String user, List<String> stop, Double presencePenalty, Double frequencyPenalty, List<com.azure.ai.openai.models.AzureChatExtensionConfiguration> dataSources, com.azure.ai.openai.models.AzureChatEnhancementConfiguration enhancements, Long seed, com.azure.ai.openai.models.ChatCompletionsResponseFormat responseFormat, Duration timeout, Integer maxRetries, com.azure.core.http.ProxyOptions proxyOptions, boolean logRequestsAndResponses, boolean useAsyncClient, List<ChatModelListener> listeners, String userAgentSuffix, Map<String, String> customHeaders) -
AzureOpenAiStreamingChatModel
public AzureOpenAiStreamingChatModel(String endpoint, String serviceVersion, com.azure.core.credential.KeyCredential keyCredential, String deploymentName, Tokenizer tokenizer, Integer maxTokens, Double temperature, Double topP, Map<String, Integer> logitBias, String user, List<String> stop, Double presencePenalty, Double frequencyPenalty, List<com.azure.ai.openai.models.AzureChatExtensionConfiguration> dataSources, com.azure.ai.openai.models.AzureChatEnhancementConfiguration enhancements, Long seed, com.azure.ai.openai.models.ChatCompletionsResponseFormat responseFormat, Duration timeout, Integer maxRetries, com.azure.core.http.ProxyOptions proxyOptions, boolean logRequestsAndResponses, boolean useAsyncClient, List<ChatModelListener> listeners, String userAgentSuffix, Map<String, String> customHeaders) -
AzureOpenAiStreamingChatModel
public AzureOpenAiStreamingChatModel(String endpoint, String serviceVersion, com.azure.core.credential.TokenCredential tokenCredential, String deploymentName, Tokenizer tokenizer, Integer maxTokens, Double temperature, Double topP, Map<String, Integer> logitBias, String user, List<String> stop, Double presencePenalty, Double frequencyPenalty, List<com.azure.ai.openai.models.AzureChatExtensionConfiguration> dataSources, com.azure.ai.openai.models.AzureChatEnhancementConfiguration enhancements, Long seed, com.azure.ai.openai.models.ChatCompletionsResponseFormat responseFormat, Duration timeout, Integer maxRetries, com.azure.core.http.ProxyOptions proxyOptions, boolean logRequestsAndResponses, boolean useAsyncClient, List<ChatModelListener> listeners, String userAgentSuffix, Map<String, String> customHeaders)
-
-
Method Details
-
generate
Description copied from interface:StreamingChatLanguageModel
Generates a response from the model based on a sequence of messages. Typically, the sequence contains messages in the following order: System (optional) - User - AI - User - AI - User ...- Specified by:
generate
in interfaceStreamingChatLanguageModel
- Parameters:
messages
- A list of messages.handler
- The handler for streaming the response.
-
generate
public void generate(List<ChatMessage> messages, List<ToolSpecification> toolSpecifications, StreamingResponseHandler<AiMessage> handler) Description copied from interface:StreamingChatLanguageModel
Generates a response from the model based on a list of messages and a list of tool specifications. The response may either be a text message or a request to execute one of the specified tools. Typically, the list contains messages in the following order: System (optional) - User - AI - User - AI - User ...- Specified by:
generate
in interfaceStreamingChatLanguageModel
- Parameters:
messages
- A list of messages.toolSpecifications
- A list of tools that the model is allowed to execute. The model autonomously decides whether to use any of these tools.handler
- The handler for streaming the response.AiMessage
can contain either a textual response or a request to execute one of the tools.
-
generate
public void generate(List<ChatMessage> messages, ToolSpecification toolSpecification, StreamingResponseHandler<AiMessage> handler) Description copied from interface:StreamingChatLanguageModel
Generates a response from the model based on a list of messages and a single tool specification. The model is forced to execute the specified tool. This is usually achieved by setting `tool_choice=ANY` in the LLM provider API.- Specified by:
generate
in interfaceStreamingChatLanguageModel
- Parameters:
messages
- A list of messages.toolSpecification
- The specification of a tool that must be executed. The model is forced to execute this tool.handler
- The handler for streaming the response.
-
estimateTokenCount
Description copied from interface:TokenCountEstimator
Estimates the count of tokens in the specified list of messages.- Specified by:
estimateTokenCount
in interfaceTokenCountEstimator
- Parameters:
messages
- the list of messages- Returns:
- the estimated count of tokens
-
builder
-