Class AstraDbEmbeddingStore
java.lang.Object
dev.langchain4j.store.embedding.astradb.AstraDbEmbeddingStore
- All Implemented Interfaces:
EmbeddingStore<TextSegment>
Implementation of
EmbeddingStore
using AstraDB.- See Also:
-
Field Summary
-
Constructor Summary
ConstructorDescriptionAstraDbEmbeddingStore
(@NonNull com.dtsx.astra.sdk.AstraDBCollection client) Initialization of the store with an EXISTING collection.AstraDbEmbeddingStore
(@NonNull com.dtsx.astra.sdk.AstraDBCollection client, int itemsPerChunk, int concurrentThreads) Initialization of the store with an EXISTING collection. -
Method Summary
Modifier and TypeMethodDescriptionAdds a given embedding to the store.add
(Embedding embedding, TextSegment textSegment) Adds a given embedding and the corresponding content that has been embedded to the store.void
Adds a given embedding to the store.Adds multiple embeddings to the store.addAll
(List<Embedding> embeddingList, List<TextSegment> textSegmentList) Add multiple embeddings as a single action.void
clear()
Delete all records from the table.findRelevant
(Embedding referenceEmbedding, int maxResults, double minScore) Finds the most relevant (closest in space) embeddings to the provided reference embedding.findRelevant
(Embedding referenceEmbedding, io.stargate.sdk.data.domain.query.Filter metaDatafilter, int maxResults, double minScore) Semantic search with metadata filtering.Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
Methods inherited from interface dev.langchain4j.store.embedding.EmbeddingStore
findRelevant, findRelevant, findRelevant, remove, removeAll, removeAll, removeAll, search
-
Field Details
-
KEY_ATTRIBUTES_BLOB
Saving the text chunk as an attribut.- See Also:
-
KEY_SIMILARITY
Metadata used for similarity.- See Also:
-
-
Constructor Details
-
AstraDbEmbeddingStore
public AstraDbEmbeddingStore(@NonNull @NonNull com.dtsx.astra.sdk.AstraDBCollection client) Initialization of the store with an EXISTING collection.- Parameters:
client
- astra db collection client
-
AstraDbEmbeddingStore
public AstraDbEmbeddingStore(@NonNull @NonNull com.dtsx.astra.sdk.AstraDBCollection client, int itemsPerChunk, int concurrentThreads) Initialization of the store with an EXISTING collection.- Parameters:
client
- astra db collection clientitemsPerChunk
- size of 1 chunk in between 1 and 20
-
-
Method Details
-
clear
public void clear()Delete all records from the table. -
add
Adds a given embedding to the store.- Specified by:
add
in interfaceEmbeddingStore<TextSegment>
- Parameters:
embedding
- The embedding to be added to the store.- Returns:
- The auto-generated ID associated with the added embedding.
-
add
Adds a given embedding and the corresponding content that has been embedded to the store.- Specified by:
add
in interfaceEmbeddingStore<TextSegment>
- Parameters:
embedding
- The embedding to be added to the store.textSegment
- Original content that was embedded.- Returns:
- The auto-generated ID associated with the added embedding.
-
add
Adds a given embedding to the store.- Specified by:
add
in interfaceEmbeddingStore<TextSegment>
- Parameters:
id
- The unique identifier for the embedding to be added.embedding
- The embedding to be added to the store.
-
addAll
Adds multiple embeddings to the store.- Specified by:
addAll
in interfaceEmbeddingStore<TextSegment>
- Parameters:
embeddings
- A list of embeddings to be added to the store.- Returns:
- A list of auto-generated IDs associated with the added embeddings.
-
addAll
Add multiple embeddings as a single action.- Specified by:
addAll
in interfaceEmbeddingStore<TextSegment>
- Parameters:
embeddingList
- list of embeddingstextSegmentList
- list of text segment- Returns:
- list of new row if (same order as the input)
-
findRelevant
public List<EmbeddingMatch<TextSegment>> findRelevant(Embedding referenceEmbedding, int maxResults, double minScore) Finds the most relevant (closest in space) embeddings to the provided reference embedding.- Specified by:
findRelevant
in interfaceEmbeddingStore<TextSegment>
- Parameters:
referenceEmbedding
- The embedding used as a reference. Returned embeddings should be relevant (closest) to this one.maxResults
- The maximum number of embeddings to be returned.minScore
- The minimum relevance score, ranging from 0 to 1 (inclusive). Only embeddings with a score of this value or higher will be returned.- Returns:
- A list of embedding matches. Each embedding match includes a relevance score (derivative of cosine distance), ranging from 0 (not relevant) to 1 (highly relevant).
-
findRelevant
public List<EmbeddingMatch<TextSegment>> findRelevant(Embedding referenceEmbedding, io.stargate.sdk.data.domain.query.Filter metaDatafilter, int maxResults, double minScore) Semantic search with metadata filtering.- Parameters:
referenceEmbedding
- vectormetaDatafilter
- fileter for metadatamaxResults
- limitminScore
- threshold- Returns:
- records
-