Class AbstractAzureAiSearchEmbeddingStore
java.lang.Object
dev.langchain4j.store.embedding.azure.search.AbstractAzureAiSearchEmbeddingStore
- All Implemented Interfaces:
EmbeddingStore<TextSegment>
- Direct Known Subclasses:
AzureAiSearchContentRetriever, AzureAiSearchEmbeddingStore
public abstract class AbstractAzureAiSearchEmbeddingStore
extends Object
implements EmbeddingStore<TextSegment>
-
Field Summary
FieldsModifier and TypeFieldDescriptionprotected static final Stringprotected final Stringprotected static final Stringprotected static final Stringprotected static final Stringstatic final Stringprotected AzureAiSearchFilterMapperprotected com.azure.search.documents.SearchClientprotected static final Stringprotected static final Stringprotected static final String -
Constructor Summary
Constructors -
Method Summary
Modifier and TypeMethodDescriptionAdd an embedding to the store.add(Embedding embedding, TextSegment textSegment) Add an embedding and the related content to the store.voidAdd an embedding to the store.Add a list of embeddings to the store.voidAdds multiple embeddings and their corresponding contents that have been embedded to the store.voidcreateOrUpdateIndex(int dimensions) Creates or updates the index using a ready-made index.voidprotected static doublefromAzureScoreToRelevanceScore(double score) Calculates LangChain4j's RelevanceScore from Azure AI Search's score.static doublefromAzureScoreToRelevanceScore(com.azure.search.documents.models.SearchResult searchResult, AzureAiSearchQueryType azureAiSearchQueryType) Calculates LangChain4j's RelevanceScore from Azure AI Search's score, for the 4 types of search.protected List<EmbeddingMatch<TextSegment>> getEmbeddingMatches(com.azure.search.documents.util.SearchPagedIterable searchResults, Double minScore, AzureAiSearchQueryType azureAiSearchQueryType) protected voidinitialize(String endpoint, com.azure.core.credential.AzureKeyCredential keyCredential, com.azure.core.credential.TokenCredential tokenCredential, boolean createOrUpdateIndex, int dimensions, com.azure.search.documents.indexes.models.SearchIndex index, String indexName, AzureAiSearchFilterMapper filterMapper) voidRemoves a single embedding from the store by ID.voidRemoves all embeddings from the store.voidRemoves all embeddings that match the specifiedFilterfrom the store.voidremoveAll(Collection<String> ids) Removes all embeddings that match the specified IDs from the store.search(EmbeddingSearchRequest request) Searches for the most similar (closest in the embedding space)Embeddings.Methods inherited from class Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitMethods inherited from interface EmbeddingStore
addAll, generateIds
-
Field Details
-
DEFAULT_INDEX_NAME
- See Also:
-
DEFAULT_FIELD_CONTENT
- See Also:
-
DEFAULT_FIELD_CONTENT_VECTOR
- See Also:
-
DEFAULT_FIELD_METADATA
- See Also:
-
DEFAULT_FIELD_METADATA_SOURCE
- See Also:
-
DEFAULT_FIELD_METADATA_ATTRS
- See Also:
-
SEMANTIC_SEARCH_CONFIG_NAME
- See Also:
-
VECTOR_ALGORITHM_NAME
- See Also:
-
VECTOR_SEARCH_PROFILE_NAME
- See Also:
-
searchClient
protected com.azure.search.documents.SearchClient searchClient -
filterMapper
-
-
Constructor Details
-
AbstractAzureAiSearchEmbeddingStore
public AbstractAzureAiSearchEmbeddingStore()
-
-
Method Details
-
initialize
protected void initialize(String endpoint, com.azure.core.credential.AzureKeyCredential keyCredential, com.azure.core.credential.TokenCredential tokenCredential, boolean createOrUpdateIndex, int dimensions, com.azure.search.documents.indexes.models.SearchIndex index, String indexName, AzureAiSearchFilterMapper filterMapper) -
createOrUpdateIndex
public void createOrUpdateIndex(int dimensions) Creates or updates the index using a ready-made index.- Parameters:
dimensions- The number of dimensions of the embeddings.
-
deleteIndex
public void deleteIndex() -
add
Add an embedding to the store.- Specified by:
addin interfaceEmbeddingStore<TextSegment>- Parameters:
embedding- The embedding to be added to the store.- Returns:
- The auto-generated ID associated with the added embedding.
-
add
Add an embedding to the store.- Specified by:
addin interfaceEmbeddingStore<TextSegment>- Parameters:
id- The unique identifier for the embedding to be added.embedding- The embedding to be added to the store.
-
add
Add an embedding and the related content to the store.- Specified by:
addin interfaceEmbeddingStore<TextSegment>- Parameters:
embedding- The embedding to be added to the store.textSegment- Original content that was embedded.- Returns:
- The auto-generated ID associated with the added embedding.
-
addAll
Add a list of embeddings to the store.- Specified by:
addAllin interfaceEmbeddingStore<TextSegment>- Parameters:
embeddings- A list of embeddings to be added to the store.- Returns:
- A list of auto-generated IDs associated with the added embeddings.
-
remove
Description copied from interface:EmbeddingStoreRemoves a single embedding from the store by ID.- Specified by:
removein interfaceEmbeddingStore<TextSegment>- Parameters:
id- The unique ID of the embedding to be removed.
-
removeAll
Description copied from interface:EmbeddingStoreRemoves all embeddings that match the specified IDs from the store.- Specified by:
removeAllin interfaceEmbeddingStore<TextSegment>- Parameters:
ids- A collection of unique IDs of the embeddings to be removed.
-
removeAll
public void removeAll()Description copied from interface:EmbeddingStoreRemoves all embeddings from the store.- Specified by:
removeAllin interfaceEmbeddingStore<TextSegment>
-
removeAll
Description copied from interface:EmbeddingStoreRemoves all embeddings that match the specifiedFilterfrom the store.- Specified by:
removeAllin interfaceEmbeddingStore<TextSegment>- Parameters:
filter- The filter to be applied to theMetadataof theTextSegmentduring removal. Only embeddings whoseTextSegment'sMetadatamatch theFilterwill be removed.
-
search
Description copied from interface:EmbeddingStoreSearches for the most similar (closest in the embedding space)Embeddings.
All search criteria are defined inside theEmbeddingSearchRequest.
EmbeddingSearchRequest.filter()can be used to filter by various metadata entries (e.g., user/memory ID). Please note that not allEmbeddingStoreimplementations supportFiltering.- Specified by:
searchin interfaceEmbeddingStore<TextSegment>- Parameters:
request- A request to search in anEmbeddingStore. Contains all search criteria.- Returns:
- An
EmbeddingSearchResultcontaining all foundEmbeddings.
-
getEmbeddingMatches
protected List<EmbeddingMatch<TextSegment>> getEmbeddingMatches(com.azure.search.documents.util.SearchPagedIterable searchResults, Double minScore, AzureAiSearchQueryType azureAiSearchQueryType) -
addAll
Description copied from interface:EmbeddingStoreAdds multiple embeddings and their corresponding contents that have been embedded to the store.- Specified by:
addAllin interfaceEmbeddingStore<TextSegment>- Parameters:
ids- A list of IDs associated with the added embeddings.embeddings- A list of embeddings to be added to the store.embedded- A list of original contents that were embedded.
-
fromAzureScoreToRelevanceScore
protected static double fromAzureScoreToRelevanceScore(double score) Calculates LangChain4j's RelevanceScore from Azure AI Search's score.Score in Azure AI Search is transformed into a cosine similarity as described here: https://learn.microsoft.com/en-us/azure/search/vector-search-ranking#scores-in-a-vector-search-results
RelevanceScore in LangChain4j is a derivative of cosine similarity, but it compresses it into 0..1 range (instead of -1..1) for ease of use.
-
fromAzureScoreToRelevanceScore
public static double fromAzureScoreToRelevanceScore(com.azure.search.documents.models.SearchResult searchResult, AzureAiSearchQueryType azureAiSearchQueryType) Calculates LangChain4j's RelevanceScore from Azure AI Search's score, for the 4 types of search.
-