Class VespaEmbeddingStore
java.lang.Object
dev.langchain4j.store.embedding.vespa.VespaEmbeddingStore
- All Implemented Interfaces:
EmbeddingStore<TextSegment>
-
Constructor Summary
-
Method Summary
Modifier and TypeMethodDescriptionAdds a given embedding to the store.add
(Embedding embedding, TextSegment textSegment) Adds a given embedding and the corresponding content that has been embedded to the store.void
Adds a new embedding with provided ID to the store.Adds multiple embeddings to the store.void
Adds multiple embeddings and their corresponding contents that have been embedded to the store.findRelevant
(Embedding referenceEmbedding, int maxResults, double minScore) Finds the most relevant (closest in space) embeddings to the provided reference embedding.Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
Methods inherited from interface dev.langchain4j.store.embedding.EmbeddingStore
addAll, findRelevant, findRelevant, findRelevant, generateIds, remove, removeAll, removeAll, removeAll, search
-
Constructor Details
-
VespaEmbeddingStore
public VespaEmbeddingStore(String url, String keyPath, String certPath, Duration timeout, String namespace, String documentType, String rankProfile, Integer targetHits, Boolean avoidDups) Creates a new VespaEmbeddingStore instance.- Parameters:
url
- server url, local or cloud one. The latter you can find under Endpoint of your Vespa application, e.g. https://alexey-heezer.langchain4j.mytenant346.aws-us-east-1c.dev.z.vespa-app.cloud/keyPath
- local path to the SSL private key file in PEM format. Read docs for details.certPath
- local path to the SSL certificate file in PEM format. Read docs for details.timeout
- for Vespa Java client injava.time.Duration
format.namespace
- required for document ID generation, find more details here.documentType
- document type, used for document ID generation, find more details here and data queryingrankProfile
- rank profile from your .sd schema. Provided example schema configures cosine similarity matchtargetHits
- sets the number of hits (10 is default) exposed to the real Vespa's first-phase ranking function per content node, find more details here.avoidDups
- if true (default), thenVespaEmbeddingStore
will generate a hashed ID based on provided text segment, which avoids duplicated entries in DB. If false, then random ID will be generated.
-
-
Method Details
-
add
Description copied from interface:EmbeddingStore
Adds a given embedding to the store.- Specified by:
add
in interfaceEmbeddingStore<TextSegment>
- Parameters:
embedding
- The embedding to be added to the store.- Returns:
- The auto-generated ID associated with the added embedding.
-
add
Adds a new embedding with provided ID to the store.- Specified by:
add
in interfaceEmbeddingStore<TextSegment>
- Parameters:
id
- "user-specified" part of document ID, find more details hereembedding
- the embedding to add
-
add
Description copied from interface:EmbeddingStore
Adds a given embedding and the corresponding content that has been embedded to the store.- Specified by:
add
in interfaceEmbeddingStore<TextSegment>
- Parameters:
embedding
- The embedding to be added to the store.textSegment
- Original content that was embedded.- Returns:
- The auto-generated ID associated with the added embedding.
-
addAll
Description copied from interface:EmbeddingStore
Adds multiple embeddings to the store.- Specified by:
addAll
in interfaceEmbeddingStore<TextSegment>
- Parameters:
embeddings
- A list of embeddings to be added to the store.- Returns:
- A list of auto-generated IDs associated with the added embeddings.
-
addAll
Description copied from interface:EmbeddingStore
Adds multiple embeddings and their corresponding contents that have been embedded to the store.- Specified by:
addAll
in interfaceEmbeddingStore<TextSegment>
- Parameters:
ids
- A list of IDs associated with the added embeddings.embeddings
- A list of embeddings to be added to the store.embedded
- A list of original contents that were embedded.
-
findRelevant
public List<EmbeddingMatch<TextSegment>> findRelevant(Embedding referenceEmbedding, int maxResults, double minScore) Finds the most relevant (closest in space) embeddings to the provided reference embedding. The score insideEmbeddingMatch
is Vespa relevance according to provided rank profile.- Specified by:
findRelevant
in interfaceEmbeddingStore<TextSegment>
- Parameters:
referenceEmbedding
- The embedding used as a reference. Returned embeddings should be relevant (closest) to this one.maxResults
- The maximum number of embeddings to be returned.minScore
- The minimum relevance score, ranging from 0 to 1 (inclusive). Only embeddings with a score of this value or higher will be returned.- Returns:
- A list of embedding matches. Each embedding match includes a relevance score (derivative of cosine distance), ranging from 0 (not relevant) to 1 (highly relevant).
-