OpenAI
If you are using Quarkus, please refer to the Quarkus LangChain4j documentation.
OpenAI Documentation
Maven Dependency
Plain Java
<dependency>
<groupId>dev.langchain4j</groupId>
<artifactId>langchain4j-open-ai</artifactId>
<version>0.36.1</version>
</dependency>
Spring Boot
<dependency>
<groupId>dev.langchain4j</groupId>
<artifactId>langchain4j-open-ai-spring-boot-starter</artifactId>
<version>0.36.1</version>
</dependency>
API Key
To use OpenAI models, you will need an API key. You can create one here.
If you don't have your own OpenAI API key, don't worry.
You can temporarily use demo
key, which we provide for free for demonstration purposes:
String apiKey = "demo";
Be aware that when using the demo
key, all requests to the OpenAI API go through our proxy,
which injects the real key before forwarding your request to the OpenAI API.
We do not collect or use your data in any way.
The demo
key has a quota, is restricted to the gpt-4o-mini
model, and should only be used for demonstration purposes.
Creating OpenAiChatModel
Plain Java
ChatLanguageModel model = OpenAiChatModel.builder()
.apiKey(System.getenv("OPENAI_API_KEY"))
...
.build();
This will create an instance of OpenAiChatModel
with default model parameters (e.g. gpt-3.5-turbo
model name, 0.7
temperature, etc.).
Default model parameters can be customized by providing values in the builder.
Spring Boot
Add to the application.properties
:
langchain4j.open-ai.chat-model.api-key=${OPENAI_API_KEY}
langchain4j.open-ai.chat-model.base-url=...
langchain4j.open-ai.chat-model.custom-headers=...
langchain4j.open-ai.chat-model.frequency-penalty=...
langchain4j.open-ai.chat-model.log-requests=...
langchain4j.open-ai.chat-model.log-responses=...
langchain4j.open-ai.chat-model.logit-bias=...
langchain4j.open-ai.chat-model.max-retries=...
langchain4j.open-ai.chat-model.max-completion-tokens=...
langchain4j.open-ai.chat-model.max-tokens=...
langchain4j.open-ai.chat-model.model-name=...
langchain4j.open-ai.chat-model.organization-id=...
langchain4j.open-ai.chat-model.parallel-tool-calls=...
langchain4j.open-ai.chat-model.presence-penalty=...
langchain4j.open-ai.chat-model.proxy.host=...
langchain4j.open-ai.chat-model.proxy.port=...
langchain4j.open-ai.chat-model.proxy.type=...
langchain4j.open-ai.chat-model.response-format=...
langchain4j.open-ai.chat-model.seed=...
langchain4j.open-ai.chat-model.stop=...
langchain4j.open-ai.chat-model.strict-schema=...
langchain4j.open-ai.chat-model.strict-tools=...
langchain4j.open-ai.chat-model.temperature=...
langchain4j.open-ai.chat-model.timeout=...
langchain4j.open-ai.chat-model.top-p=
langchain4j.open-ai.chat-model.user=...
See the description of some of the parameters above here.
This configuration will create an OpenAiChatModel
bean,
which can be either used by an AI Service
or autowired where needed, for example:
@RestController
class ChatLanguageModelController {
ChatLanguageModel chatLanguageModel;
ChatLanguageModelController(ChatLanguageModel chatLanguageModel) {
this.chatLanguageModel = chatLanguageModel;
}
@GetMapping("/model")
public String model(@RequestParam(value = "message", defaultValue = "Hello") String message) {
return chatLanguageModel.generate(message);
}
}
Structured Outputs
The Structured Outputs feature is supported for both tools and JSON mode.
Structured Outputs for tools
To enable Structured Outputs feature for tools, set .strictTools(true)
when building the model:
OpenAiChatModel.builder()
...
.strictTools(true)
.build(),
Please note that this will automatically make all tool parameters mandatory (required
in json schema)
and set additionalProperties=false
for each object
in json schema. This is due to the current OpenAI limitations.
Structured Outputs for JSON mode
To enable Structured Outputs feature for JSON mode, set .responseFormat("json_schema")
and .strictJsonSchema(true)
when building the model:
OpenAiChatModel.builder()
...
.responseFormat("json_schema")
.strictJsonSchema(true)
.build(),
In this case AiServices
will not append "You must answer strictly in the following JSON format: ..." string
to the end of the last UserMessage
, but will create a Json schema from the given POJO and pass it to the LLM.
Please note that this works only when method return type is a POJO.
If the return type is something else, (like an enum or a List<String>
),
the old behaviour is applied (with "You must answer strictly ...").
All return types will be supported in the near future.
Creating OpenAiStreamingChatModel
Plain Java
OpenAiStreamingChatModel model = OpenAiStreamingChatModel.builder()
.apiKey(System.getenv("OPENAI_API_KEY"))
...
.build();
Spring Boot
Add to the application.properties
:
langchain4j.open-ai.streaming-chat-model.api-key=${OPENAI_API_KEY}
langchain4j.open-ai.streaming-chat-model.base-url=...
langchain4j.open-ai.streaming-chat-model.custom-headers=...
langchain4j.open-ai.streaming-chat-model.frequency-penalty=...
langchain4j.open-ai.streaming-chat-model.log-requests=...
langchain4j.open-ai.streaming-chat-model.log-responses=...
langchain4j.open-ai.streaming-chat-model.logit-bias=...
langchain4j.open-ai.streaming-chat-model.max-retries=...
langchain4j.open-ai.streaming-chat-model.max-completion-tokens=...
langchain4j.open-ai.streaming-chat-model.max-tokens=...
langchain4j.open-ai.streaming-chat-model.model-name=...
langchain4j.open-ai.streaming-chat-model.organization-id=...
langchain4j.open-ai.streaming-chat-model.parallel-tool-calls=...
langchain4j.open-ai.streaming-chat-model.presence-penalty=...
langchain4j.open-ai.streaming-chat-model.proxy.host=...
langchain4j.open-ai.streaming-chat-model.proxy.port=...
langchain4j.open-ai.streaming-chat-model.proxy.type=...
langchain4j.open-ai.streaming-chat-model.response-format=...
langchain4j.open-ai.streaming-chat-model.seed=...
langchain4j.open-ai.streaming-chat-model.stop=...
langchain4j.open-ai.streaming-chat-model.strict-schema=...
langchain4j.open-ai.streaming-chat-model.strict-tools=...
langchain4j.open-ai.streaming-chat-model.temperature=...
langchain4j.open-ai.streaming-chat-model.timeout=...
langchain4j.open-ai.streaming-chat-model.top-p=...
langchain4j.open-ai.streaming-chat-model.user=...
Creating OpenAiModerationModel
Plain Java
ModerationModel model = OpenAiModerationModel.builder()
.apiKey(System.getenv("OPENAI_API_KEY"))
...
.build();
Spring Boot
Add to the application.properties
:
langchain4j.open-ai.moderation-model.api-key=${OPENAI_API_KEY}
langchain4j.open-ai.moderation-model.base-url=...
langchain4j.open-ai.moderation-model.custom-headers=...
langchain4j.open-ai.moderation-model.log-requests=...
langchain4j.open-ai.moderation-model.log-responses=...
langchain4j.open-ai.moderation-model.max-retries=...
langchain4j.open-ai.moderation-model.model-name=...
langchain4j.open-ai.moderation-model.organization-id=...
langchain4j.open-ai.moderation-model.proxy.host=...
langchain4j.open-ai.moderation-model.proxy.port=...
langchain4j.open-ai.moderation-model.proxy.type=...
langchain4j.open-ai.moderation-model.timeout=...
Creating OpenAiTokenizer
Plain Java
Tokenizer tokenizer = new OpenAiTokenizer();
// or
Tokenizer tokenizer = new OpenAiTokenizer("gpt-4o");
Spring Boot
The OpenAiTokenizer
bean is created automatically by the Spring Boot starter.